Memorias de investigación
Research Publications in journals:
A Semi-Lagrangian Particle Level Set Finite Element Method for Interface Problems
Year:2013

Research Areas
  • Mechanical aeronautics and naval engineering

Information
Abstract
We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, $\parallel\cdot\parallel_{h,\infty}$, and the error analysis shows that when the level set solution $u(t)$ is in the Sobolev space $W^{r+1,\infty}(D), r\geq 0$, the convergence in the maximum norm is of the form $(KT/\Delta t)min(1,\Delta t\parallel v \parallel_{h,\infty}/h)((1-\alpha)h^{p}+h^{q})$, $p=min(2,r+1)$, and $q=min(3,r+1)$, where $v$ is a velocity. This means that at high CFL numbers, that is, when $\Delta t>h$, the error is $O(\frac{(1-\alpha)h^{p}+h^{q})}{\Delta t})$, whereas at CFL numbers less than 1, the error is $O((1-\alpha)h^{p-1}+h^{q-1}))$. We have tested our method with satisfactory results in benchmark problems such as the Zalesak's slotted disk, the single vortex flow, and the rising bubble. Read More: http://epubs.siam.org/doi/abs/10.1137/110830587?journalCode=sjoce3
International
Si
JCR
Si
Title
Siam Journal on Scientific Computing
ISBN
1064-8275
Impact factor JCR
1,949
Impact info
Datos JCR del año 2012
Volume
Journal number
From page
A1815
To page
A1846
Month
SIN MES
Ranking
Participants

Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Mecánica de fluidos aplicada a la Ingeniería Industrial
  • Departamento: Ingeniería Energética y Fluidomecánica
  • Departamento: Matemática Aplicada a la Ingeniería Industrial