Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks - A Case Study for the Optimal Ordering of Tables
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation. There are two main approaches to parameter setting: parameter tuning and parameter control. In this paper, we introduce self-adaptive parameter control of a genetic algorithm based on Bayesian network learning and simulation. The nodes of this Bayesian network are genetic algorithm parameters to be controlled. Its structure captures probabilistic conditional (in)dependence relationships between the parameters. They are learned from the best individuals, i.e., the best configurations of the genetic algorithm. Individuals are evaluated by running the genetic algorithm for the respective parameter configuration. Since all these runs are time-consuming tasks, each genetic algorithm uses a small-sized population and is stopped before convergence. In this way promising individuals should not be lost. Experiments with an optimal search problem for simultaneous row and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time. Moreover, our approach can cope with as yet unsolved high-dimensional problems.
Internacional
Si
JCR del ISI
Si
Título de la revista
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN
1000-9000
Factor de impacto JCR
0,564
Información de impacto
Volumen
28
DOI
10.1007/s11390-013-1370-0
Número de revista
4
Desde la página
720
Hasta la página
731
Mes
SIN MES
Ranking
0
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: Juan Antonio Fdez del Pozo De Salamanca (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)