Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Machine Learning Approach for the Outcome Prediction of Temporal Lobe Epilepsy Surgery
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Epilepsy surgery is effective in reducing both the number and frequency of seizures, particularly in temporal lobe epilepsy (TLE). Nevertheless, a significant proportion of these patients continue suffering seizures after surgery. Here we used a machine learning approach to predict the outcome of epilepsy surgery based on supervised classification data mining taking into account not only the common clinical variables, but also pathological and neuropsychological evaluations. We have generated models capable of predicting whether a patient with TLE secondary to hippocampal sclerosis will fully recover from epilepsy or not. The machine learning analysis revealed that outcome could be predicted with an estimated accuracy of almost 90% using some clinical and neuropsychological features. Importantly, not all the features were needed to perform the prediction; some of them proved to be irrelevant to the prognosis. Personality style was found to be one of the key features to predict the outcome. Although we examined relatively few cases, findings were verified across all data, showing that the machine learning approach described in the present study may be a powerful method. Since neuropsychological assessment of epileptic patients is a standard protocol in the pre-surgical evaluation, we propose to include these specific psychological tests and machine learning tools to improve the selection of candidates for epilepsy surgery.
Internacional
Si
JCR del ISI
Si
Título de la revista
PLOS ONE
ISSN
1932-6203
Factor de impacto JCR
4,092
Información de impacto
Volumen
8
DOI
10.1371/journal.pone.0062819
Número de revista
4
Desde la página
0
Hasta la página
9
Mes
SIN MES
Ranking
0
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Ruben Armañanzas Arnedillo (UPM)
  • Autor: Lidia Alonso Nanclares (UPM)
  • Autor: Jesús DeFelipe-Oroquieta (Departamento de Psicología y Eduación, Universidad Camilo José Cela, Villanueva de la Cañada, Madrid, Spain)
  • Autor: Asta Kastanauskaite . (UPM)
  • Autor: Rafael G. De Sola (Department of Neurosurgery, Hospital Universitario de la Princesa, Madrid, Madrid, Spain)
  • Autor: Javier De Felipe Oroquieta (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)