Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
Augmented semi-Naive Bayes classifier
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The naive Bayes is a competitive classifier that makes strong conditional independence assumptions. Its accuracy can be improved by relaxing these assumptions. One classifier which does that is the semi-naive Bayes. The state-of-the-art algorithm for learning a semi-naive Bayes from data is the backward sequential elimination and joining (BSEJ) algorithm. We extend BSEJ with a second step which removes some of its unwarranted independence assumptions. Our classifier outperforms BSEJ and five other Bayesian network classifiers on a set of benchmark databases, although the difference in performance is not statistically significant.
Internacional
Si
DOI
Edición del Libro
Editorial del Libro
Springer
ISBN
978-3-642-40642-3
Serie
Título del Libro
Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 8109
Desde página
159
Hasta página
167
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Bojan Mihaljevic (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)