Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Classification of neural signals from sparse autoregressive features
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
This paper introduces a signal classification framework that can be used for brain-computer interface design. The actual classification is performed on sparse autoregressive features. It can use any well-known classification algorithm, such as discriminant analysis, linear logistic regression and support vector machines. The autoregressive coefficients of all signals and channels are simultaneously estimated by the group lasso, and the estimation is guided by the classification performance. Thanks to the variable selection capability of the group lasso, the framework can drop individual autoregressive coefficients that are useless in the prediction stage. Also, the framework is relatively insensitive to the chosen autoregressive order. We devise an efficient algorithm to solve this problem. We test our approach on Keirn and Aunon's data, used for binary classification of electroencephalogram signals, achieving promising results.
Internacional
Si
JCR del ISI
Si
Título de la revista
Neurocomputing
ISSN
0925-2312
Factor de impacto JCR
1,634
Información de impacto
Volumen
111
DOI
Número de revista
Desde la página
21
Hasta la página
26
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: D. Vidaurre
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: P. Larrañaga
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)