Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Multi-label classification with Bayesian network-based chain classifiers
Año:2014
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
In multi-label classification the goal is to assign an instance to a set of different classes. This task is normally addressed either by defining a compound class variable with all the possible combinations of labels (label power-set methods) or by building independent classifiers for each class (binary relevance methods). The first approach suffers from high computationally complexity, while the second approach ignores possible dependencies among classes. Chain classifiers have been recently proposed to address these problems, where each classifier in the chain learns and predicts the label of one class given the attributes and all the predictions of the previous classifiers in the chain. In this paper we introduce a method for chaining Bayesian classifiers that combines the strengths of classifier chains and Bayesian networks for multi-label classification. A Bayesian network is induced from data to: (i) represent the probabilistic dependency relationships between classes, (ii) constrain the number of class variables used in the chain classifier by considering conditional independence conditions, and (iii) reduce the number of possible chain orders. The effects in the Bayesian chain classifier performance of considering different chain orders, training strategies, number of class variables added in the base classifiers, and different base classifiers, are experimentally assessed. In particular, it is shown that a random chain order considering the constraints imposed by a Bayesian network with a simple tree-based structure can have very competitive results in terms of predictive performance and time complexity against related state-of-the-art approaches.
Internacional
Si
JCR del ISI
Si
Título de la revista
Pattern Recognition Letters
ISSN
0167-8655
Factor de impacto JCR
1,266
Información de impacto
Datos JCR del año 2012
Volumen
41
DOI
Número de revista
Desde la página
14
Hasta la página
22
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: L.E. Sucar
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: E.F. Morales
  • Autor: P. Hernandez-Leal
  • Autor: J.H. Zaragoza
  • Autor: P. Larrañaga
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)