Observatorio de I+D+i UPM

Memorias de investigación
Aerial Coverage Path Planning applied to Mapping
Áreas de investigación
  • Automática
n the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Tipo de Tesis
Sobresaliente cum laude
Esta actividad pertenece a memorias de investigación
  • Director: Antonio Barrientos Cruz (UPM)
  • Director: Jaime del Cerro Giner (UPM)
  • Autor: Joao Ricardo Pereira Valente (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Centro o Instituto I+D+i: Centro de Automática y Robótica (CAR). Centro Mixto UPM-CSIC
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)