Observatorio de I+D+i UPM

Memorias de investigación
Propagator method as a kinetic operator to analyze discotinuities in plamas
Áreas de investigación
  • Fisica pl -- plasmas and fluidos
We present a path-integral like method to numerically solve drift-diffusion equations for plasma physics [1,2]. The algorithm uses short-time propagators as approximate Green¿s functions that tend to smooth typical discontinuities arising in plasma dynamics as, for instance, the effects of plasma-wall interaction or localized particle flows. The usual numerical schemes based on differences may fail to represent these abrupt conditions by inducing numerical diffusion and instabilities. However, the robust mesh-free computational integral method has been proved to be unconditionally stable if no restrictions are imposed by boundary conditions. The extension of the method to deal with boundary value problems [3] is analysed for plasma kinetic equations. It is found that the advancing scheme is useful not only to deal with imposed abrupt conditions in the plasma bulk, but also to describe the merging of natural discontinuities in the system. Such kind of discontinuities may be induced by the effects of electromagnetic fields generated by charge separation as well as for the existence of two differentiated plasma regimes at a certain interface. In any case, the kinetic equation may have drift and/or diffusion coefficients that are likewise discontinuous [4]. The method works almost being numerically insensitive to these discontinuities leading to feasible physically meaningful solutions. The scheme works as an effective integral kinetic operator. In this sense, we study the possibility of dealing with Fokker-Planck equations connecting two different dynamical statics (Maxwell- Boltzmann and Fermi, for instance) to describe the interaction of two regimes at an interface. The results may be relevant to look into the dynamics of plasma-wall interaction, charge structures in plasma thrusters, plasma layers or in emissive probes [5].
Entidad relacionada
Nacionalidad Entidad
Sin nacionalidad
Lugar del congreso
Kiten, Bulgaria
Esta actividad pertenece a memorias de investigación
  • Autor: Jose Manuel Donoso Vargas (UPM)
  • Autor: A. Jiménez
  • Autor: Jorge Gonzalez Muñoz (UPM)
  • Autor: A. González
  • Autor: Luis Conde Lopez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Investigación en Fusión Inercial y Física de Plasmas
  • Departamento: Física Aplicada a Las Ingenierías Aeronáutica y Naval
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)