Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Comparing and Combining Predictive Business Process Monitoring Techniques
Año:2014
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
Predictive business process monitoring aims at forecasting potential problems during process execution before they occur so that these problems can be handled proactively. Several predictive monitoring techniques have been proposed in the past. However, so far those prediction techniques have been assessed only independently from each other, making it hard to reliably compare their applicability and accuracy. We empirically analyze and compare three main classes of predictive monitoring techniques, which are based on machine learning, constraint satisfaction, and Quality-of-Service (QoS) aggregation. Based on empirical evidence from an industrial case study in the area of transport and logistics, we assess those techniques with respect to five accuracy indicators. We further determine the dependency of accuracy on the point in time during process execution when a prediction is made in order to determine lead-times for accurate predictions. Our evidence suggests that, given a lead-time of half of the process duration, all predictive monitoring techniques consistently provide an accuracy of at least 70%. Yet, it also becomes evident that the techniques differ in terms of how accurately they may predict violations and nonviolations. To improve the prediction process, we thus exploit the characteristics of the individual techniques and propose their combination. Based on our case study data, evidence indicates that certain combinations of techniques may outperform individual techniques with respect to specific accuracy indicators. Combining constraint satisfaction with QoS aggregation, for instance, improves precision by 14%; combining machine learning with constraint satisfaction shows an improvement in recall by 23%.
Internacional
Si
JCR del ISI
Si
Título de la revista
Ieee Transactions on Systems Man Cybernetics-Systems
ISSN
2168-2216
Factor de impacto JCR
2,169
Información de impacto
Volumen
45
DOI
10.1109/TSMC.2014.2347265
Número de revista
2
Desde la página
276
Hasta la página
290
Mes
AGOSTO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Manuel Carro Liñares (UPM)
  • Autor: Dragan Ivanovic . (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Computación lógica, Lenguajes, Implementación y Paralelismo (CLIP)
  • Departamento: Lenguajes y Sistemas Informáticos e Ingeniería de Software
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)