Observatorio de I+D+i UPM

Memorias de investigación
Conferencias:
Multi-class Boosting for imbalanced data.
Año:2015
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
We consider the problem of multi-class classification with imbalanced data-sets. To this end, we introduce a cost-sensitive multi-class Boosting algorithm (BAdaCost) based on a generalization of the Boosting margin, termed multi-class cost-sensitive margin. To address the class imbalance we introduce a cost matrix that weighs more hevily the costs of confused classes and a procedure to estimate these costs from the confusion matrix of a standard 0|1-loss classifier. Finally, we evaluate the performance of the approach with synthetic and real data-sets and compare our results with the AdaC2.M1 algorithm.
Internacional
Si
ISSN o ISBN
978-3-319-19389-2
Entidad relacionada
Iberian Conference on Pattern Recognition and Image Analysis
Nacionalidad Entidad
Sin nacionalidad
Lugar del congreso
Santiago de Compostela
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Antonio Fernandez Baldera (UPM)
  • Autor: José Miguel Buenaposada Biencit (UPM)
  • Autor: Luis Baumela Molina (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)