Memorias de investigación
Ponencias en congresos:
Nanomedicine Application of Alternative Therapy Cancer Treatment in Animal Models with High-Grade Gliomas CT-2A
Año:2015

Áreas de investigación
  • Tecnología electrónica y de las comunicaciones

Datos
Descripción
Cancer is one of the leading causes of death worldwide. It is expected that annual cases of cancer will increase from 14 million in 2012 to 22 million in the next two decades according to the World Health Organization [1]. On the other hand, the estimates of the Spanish Society of Medical Oncology for 2015 point out 227076 new cases only in Spain [2]. Tumors of glial cells, anaplastic astrocytoma and glioblastoma account for approximately 38% of primary brain tumors [3]. At present, despite the development of existing treatments such as chemotherapy, radiation therapy and neurosurgery these tumors tend to breed again, leading to a high mortality rate. The Center for Biomedical Technology (CTB) of the Technical University of Madrid (UPM) in cooperation with the Cajal Institute of the Spanish Council for Scientific Research (CSIC), research has been done with an application of nanomedicine using therapy through optical hyperthermia, taking as the starting point the results of in vitro experimentation with prior glioblastoma cells, using gold nanorods with laser at a wavelength of 808 nanometers, a wavelength in which tissue penetration is more efficient [4,5]. For this, it was used a syngeneic mouse model of glioblastoma by injecting of CT-2A astrocytoma cells into the caudate-putamen of C57BL/6 mice, as previously reported [6]. Five mice were used and distributed as follows: Control nanoparticles (NPs), NPs + laser therapy 15 minutes, plus 25 minutes NPs laser therapy, laser therapy and tumor control without NPs. The results of these experiments, in which the mice population was not large enough from a statistical point of view, showed comparing the individual control NPs versus animal therapy NPs + 15 laser minutes groups, a reduction of tumor growth (volume) of 15.99% which implies a reduction in the volume of 82,97 mm3. The observations of tumor volumes were made using Nuclear Magnetic Resonance. Future work will seek to optimize the intracranial stereotactic surgical method implemented in these experiments with mice as well as to increase the number of individuals to produce statistics that effectively validate this application.
Internacional
Si
Nombre congreso
NANOBIOAPP2015: Latest Advances on Nanomaterials for Biomedical Applications
Tipo de participación
970
Lugar del congreso
Barcelona, España
Revisores
Si
ISBN o ISSN
DOI
Fecha inicio congreso
21/09/2015
Fecha fin congreso
23/09/2015
Desde la página
0
Hasta la página
0
Título de las actas
http://congresses.icmab.es/nanobioapp2015/speakers/final-programme

Esta actividad pertenece a memorias de investigación

Participantes

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Tecnología Fotónica y Bioingeniería