Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
ANFIS, SVM and ANN soft-computing techniques to estimate daily solar radiation in a warm sub-humid environment
Año:2017
Áreas de investigación
  • Ingenierías
Datos
Descripción
Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance ssessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a romising alternative to the usual approaches for predicting solar radiation
Internacional
Si
JCR del ISI
Si
Título de la revista
Journal of Atmospheric And Solar-Terrestrial Physics
ISSN
1364-6826
Factor de impacto JCR
1,751
Información de impacto
Datos JCR del año 2013
Volumen
155
DOI
10.1016/j.jastp.2017.02.002
Número de revista
Desde la página
62
Hasta la página
70
Mes
MARZO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Victor Quej
  • Autor: Javier Almorox Alonso (UPM)
  • Autor: Javier A Arnaldo
  • Autor: Laurel Saito
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Producción Agraria
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)