Memorias de investigación
Research Publications in journals:
I-vector analysis for gait-based person identification using smartphone inertial signals
Year:2016

Research Areas
  • Electronic technology and of the communications,
  • Electric engineers, electronic and automatic (eil)

Information
Abstract
This paper describes and evaluates an i-vector based approach for Gait-based Person Identification (GPI) using inertial signals from a smartphone. This approach includes two variability compensation strategies (Linear Discrimination Analysis (LDA) and Probabilistic LDA) for dealing with the gait variability due to different recording sessions or different activities carried out by the user. This study uses a public available dataset that includes recordings from 30 users performing three different activities: walking, walking-upstairs and walking-downstairs. The i-vector approach is compared to a Gaussian Mixture Model-Universal Background Model (GMM-UBM) system, providing significant performance improvements when incorporating the PLDA compensation strategy: the best result reports a User Recognition Error Rate (URER) of 17.7%, an Equal Error Rate (EER) of 6.1% and an F1-score of 82.7% with 30 enrolled users. For less than six enrolled users, the URER error decreases to 5%.
International
Si
JCR
Si
Title
Pervasive And Mobile Computing
ISBN
1574-1192
Impact factor JCR
1,719
Impact info
Volume
10.1016/j.pmcj.2016.09.007
Journal number
From page
1
To page
14
Month
ENERO
Ranking
Journal Rank in Category 40/144; Quartile in Category Q2
Participants
  • Autor: Ruben San Segundo Hernandez UPM
  • Autor: Julián David Echeverry Correa Universidad Tecnológica de Pereira, Colombia
  • Autor: Christian Raúl Salamea Palacios UPM
  • Autor: Syaheerah Lutfi University Science of Malaysia (USM)
  • Autor: Jose Manuel Pardo Muñoz UPM

Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Grupo de Tecnología del Habla
  • Departamento: Ingeniería Electrónica