Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Complicity functions for detecting organized crime rings
Año:2016
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Graph theory is an evident paradigm for analyzing social networks, which are the main tool for collective behavior research, addressing the interrelations between members of a more or less well-defined community. Particularly, social network analysis has important implications in the fight against organized crime, business associations with fraudulent purposes or terrorism. Classic centrality functions for graphs are able to identify the key players of a network or their intermediaries. However, these functions provide little information in large and heterogeneous graphs. Often the most central elements of the network (usually too many) are not related to a collective of actors of interest, such as be a group of drug traffickers or fraudsters. Instead, its high centrality is due to the good relations of these central elements with other honorable actors. In this paper we introduce complicity functions, which are capable of identifying the intermediaries in a group of actors, avoiding core elements that have nothing to do with this group. These functions can classify a group of criminals according to the strength of their relationships with other actors to facilitate the detection of organized crime rings. The proposed approach is illustrated by a real example provided by the Spanish Tax Agency, including a network of 835 companies, of which eight were fraudulent.
Internacional
Si
Nombre congreso
13th International Conference MDAI (Modeling Decisions in Artificial Intelligence)
Tipo de participación
960
Lugar del congreso
Andorra
Revisores
Si
ISBN o ISSN
978-3-319-45655-3
DOI
Fecha inicio congreso
19/09/2016
Fecha fin congreso
21/09/2016
Desde la página
205
Hasta la página
216
Título de las actas
Lecture Notes in Artificial Intelligence 9880
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Eloy Vicente Cestero
  • Autor: Alfonso Mateos Caballero (UPM)
  • Autor: Antonio Jimenez Martin (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de análisis de decisiones y estadística
  • Departamento: Inteligencia Artificial
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)