Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
On the Dynamic Shifting of the MapReduce Timeout
Año:2016
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
MapReduce has become a relevant framework for Big Data processing in the cloud. At large-scale clouds, failures do occur and may incur unwanted performance degradation to Big Data applications. As the reliability of MapReduce depends on how well they detect and handle failures, this book chapter investigates the problem of failure detection in the MapReduce framework. The case studies of this contribution reveal that the current static timeout value is not adequate and demonstrate significant variations in the application?s response time with different timeout values. While arguing that comparatively little attention has been devoted to the failure detection in the framework, the chapter presents design ideas for a new adaptive timeout.
Internacional
Si
DOI
10.4018/978-1-4666-9767-6
Edición del Libro
Editorial del Libro
IGI Global
ISBN
9781466697676
Serie
Título del Libro
Managing and Processing Big Data in Cloud Computing
Desde página
1
Hasta página
22
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Bunjamin Memishi
  • Autor: Maria de los Santos Perez Hernandez (UPM)
  • Autor: Shadi Ibrahim (INRIA)
  • Autor: Gabriel Antoniu (INRIA)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Ontology Engineering Group
  • Departamento: Arquitectura y Tecnología de Sistemas Informáticos
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)