Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
Año:2016
Áreas de investigación
  • Biología molecular, celular y genética,
  • Ciencias de la computación y tecnología informática
Datos
Descripción
Since the discovery of the regulatory function of microRNA (miRNA), increased attention has focused on identifying the relationship between miRNA and disease. It has been suggested that computational method are an efficient way to identify potential disease-related miRNAs for further confirmation using biological experiments. In this paper, we first highlighted three limitations commonly associated with previous computational methods. To resolve these limitations, we established disease similarity subnetwork and miRNA similarity subnetwork by integrating multiple data sources, where the disease similarity is composed of disease semantic similarity and disease functional similarity, and the miRNA similarity is calculated using the miRNA-target gene and miRNA-lncRNA (long non-coding RNA) associations. Then, a heterogeneous network was constructed by connecting the disease similarity subnetwork and the miRNA similarity subnetwork using the known miRNA-disease associations. We extended random walk with restart to predict miRNA-disease associations in the heterogeneous network. The leave-one-out cross-validation achieved an average area under the curve (AUC) of 0:8049 across 341 diseases and 476 miRNAs. For five-fold cross-validation, our method achieved an AUC from 0:7970 to 0:9249 for 15 human diseases.
Internacional
Si
JCR del ISI
Si
Título de la revista
Ieee-Acm Transactions on Computational Biology And Bioinformatics
ISSN
1545-5963
Factor de impacto JCR
1,609
Información de impacto
Volumen
DOI
Número de revista
Desde la página
1
Hasta la página
11
Mes
ABRIL
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Yuansheng Liu
  • Autor: Xiangxiang Zeng . (UPM)
  • Autor: Zengyou He
  • Autor: Quan Zou
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Inteligencia Artificial (LIA)
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)