Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Development of advanced high heat flux and plasma-facing materials
Áreas de investigación
  • Ingenierías
Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
Título de la revista
Nuclear Fusion
Factor de impacto JCR
Información de impacto
Datos JCR del año 2015
Número de revista
Desde la página
Hasta la página
Esta actividad pertenece a memorias de investigación
  • Autor: Ch. Linsmeier
  • Autor: M Rieth
  • Autor: J Aktaa
  • Autor: T Chikada
  • : A Hoffmann
  • : J offmann
  • Autor: A Houben
  • Autor: H Kurishita
  • Autor: X Jin
  • Autor: M Li
  • Autor: A Litnovsky
  • Autor: S Matsuo
  • Autor: A Von Müller
  • Autor: V Nikolic
  • Autor: Teresa Palacios Garcia (UPM)
  • Autor: R Pippan
  • Autor: D Qu
  • Autor: J Reiser
  • Autor: J Riesch
  • Autor: T Shikama
  • Autor: R Stieglitz
  • Autor: T Weber
  • Autor: S Wurster
  • Autor: J H You
  • Autor: Z Zhou
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Materiales Estructurales Avanzados y Nanomateriales
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)