Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Bayesian model for subpixel uncertainty determination in optical measurements
Año:2017
Áreas de investigación
  • Ingenierías
Datos
Descripción
Uncertainty determination can be obtained by two procedures: GUM and the Monte Carlo Method. This work presents a model that helps to evaluate the uncertainty in measurements collected by optical measuring machines when using the Monte Carlo method. Initially, the model converts intensity, using Bayesian probability, from the pixel image derived from camera into a polygonal area with three to five vertexes. The outer vertexes are fitted using least squares procedures to obtain a measurand shape approximation in a subpixel range. Algorithms have been programmed and verified into Matlab using synthetic images with different triangles. Through a detailed analysis, the usefulness of a new tool, the parameter, will be demonstrated as an alternative method for estimating uncertainty of measurements of pixel images.
Internacional
Si
JCR del ISI
No
Título de la revista
Procedia Manufacturing
ISSN
2351-9789
Factor de impacto JCR
Información de impacto
Volumen
13 (2017)
DOI
10.1016/j.promfg.2017.09.042
Número de revista
13
Desde la página
442
Hasta la página
449
Mes
SIN MES
Ranking
SCImago Journal Rank (SJR): 0.105
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Miguel Berzal Rubio (UPM)
  • Autor: Emilio Gomez Garcia (UPM)
  • Autor: Jesus Caja Garcia (UPM)
  • Autor: Cintia Barajas Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Metrología Dimensional
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)