Memorias de investigación
Research Publications in journals:
Tiny Hand Gesture Recognition without Localization via a Deep Convolutional Network
Year:2017

Research Areas
  • Information technology and adata processing

Information
Abstract
Visual hand-gesture recognition is being increasingly desired for human-computer interaction interfaces. In many applications, hands only occupy about 10% of the image, whereas the most of it contains background, human face, and human body. Spatial localization of the hands in such scenarios could be a challenging task and ground truth bounding boxes need to be provided for training, which is usually not accessible. However, the location of the hand is not a requirement when the criteria is just the recognition of a gesture to command a consumer electronics device, such as mobiles phones and TVs. In this paper, a deep convolutional neural network is proposed to directly classify hand gestures in images without any segmentation or detection stage that could discard the irrelevant not-hand areas. The designed hand-gesture recognition network can classify seven sorts of hand gestures in a user-independent manner and on real time, achieving an accuracy of 97.1% in the dataset with simple backgrounds and 85.3% in the dataset with complex backgrounds.
International
Si
JCR
Si
Title
Ieee Transactions on Consumer Electronics
ISBN
0098-3063
Impact factor JCR
1,694
Impact info
Datos JCR del año 2016
Volume
63
Journal number
3
From page
251
To page
257
Month
AGOSTO
Ranking
Participants

Research Group, Departaments and Institutes related
  • Creador: Centro o Instituto I+D+i: Centro de I+d+i en Procesado de la Información y Telecomunicaciones
  • Departamento: Señales, Sistemas y Radiocomunicaciones