Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
A second order local projection Lagrange-Galerkin method for Navier-Stokes equations at high Reynolds numbers
Año:2018
Áreas de investigación
  • Matemáticas,
  • Ingeniería mecánica, aeronaútica y naval
Datos
Descripción
In this talk we present a stabilized Backward Difference Formula of order 2- Lagrange Galerkin method to integrate the incompressible Navier Stokes equa- tions at high Reynolds numbers. The stabilization of the conventional Lagrange- Galekin method is done via a local projection technique for inf-sup stable finite elements. We prove the stabilized Galerkin method maintains the accuracy and stability properties of the standard Galerkin one. In addiction, it is flexible in the sense that can be used with any conventional time marching scheme, and is relatively easy to incorporate in any conventional FEM code. This method is closely related with the so called Variational Multiscale Method which have been specially designed for turbulence scales separation modelling. The good results obtained in the simulation of high-Reynolds flows, suggest us that our method would be suitable for simulating more complex turbulent flows.
Internacional
Si
Nombre congreso
6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7)
Tipo de participación
960
Lugar del congreso
Glasgow, Escocia
Revisores
Si
ISBN o ISSN
DOI
Fecha inicio congreso
11/06/2018
Fecha fin congreso
15/06/2018
Desde la página
1
Hasta la página
2
Título de las actas
6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7)
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Laura Saavedra Lago (UPM)
  • Autor: Rodolfo Bermejo Bermejo (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Análisis y experimentación en mecánica de fluidos y combustión
  • Departamento: Matemáticas del Área Industrial
  • Departamento: Matemática Aplicada a la Ingeniería Aeroespacial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)