Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Longitudinal neuroimaging hipocampal markers for detecting diagnosis of Alzheimer's disease
Año:2018
Áreas de investigación
  • Ingenierías
Datos
Descripción
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
Internacional
Si
JCR del ISI
Si
Título de la revista
Neuroinformatics
ISSN
1539-2791
Factor de impacto JCR
3,852
Información de impacto
Datos JCR del año 2017
Volumen
DOI
10.1007/s12021-018-9380-2
Número de revista
Desde la página
1
Hasta la página
19
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Carlos Platero Dueñas (UPM)
  • Autor: Lin Lin
  • Autor: M. del Carmen Tobar Puente (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Matemáticas del Área Industrial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)