Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
SHADE with Iterative Local Search for Large-Scale Global Optimization
Año:2018
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Global optimization is a very important topic in research due to its wide applications in many real-world problems in science and engineering. Among optimization problems, dimensionality is one of the most crucial issues that increases the difficulty of the optimization process. Thus, Large-Scale Global Optimization, optimization with a great number of variables, arises as a field that is getting an increasing interest. In this paper, we propose a new hybrid algorithm especially designed to tackle this type of optimization problems. The proposal combines, in a iterative way, a modern Differential Evolution algorithm with one local search method chosen from a set of different search methods. The selection of the local search method is dynamic and takes into account the improvement obtained by each of them in the previous intensification phase, to identify the most adequate in each case for the problem. Experiments are carried out using the CEC'2013 Large-Scale Global Optimization benchmark, and the proposal is compared with other state-of-the-art algorithms, showing that the synergy among the different components of our proposal leads to better and more robust results than more complex algorithms. In particular, it improves the results of the current winner of previous Large-Scale Global Optimization competitions, Multiple Offspring Sampling, MOS, obtaining very good results, especially in the most difficult problems.
Internacional
Si
Nombre congreso
2018 IEEE Congress on Evolutionary Computation (CEC)
Tipo de participación
960
Lugar del congreso
Río de Janeiro, Brasil
Revisores
Si
ISBN o ISSN
978-1-5090-6017-7
DOI
10.1109/CEC.2018.8477755
Fecha inicio congreso
08/07/2018
Fecha fin congreso
13/07/2018
Desde la página
1252
Hasta la página
1259
Título de las actas
Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC)
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Daniel Molina (Universidad de Granada)
  • Autor: Antonio Latorre De la Fuente (UPM)
  • Autor: Francisco Herrera (Universidad de Granada)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Minería de Datos y Simulación (MIDAS)
  • Centro o Instituto I+D+i: Centro de Investigación en Simulación Computacional
  • Departamento: Arquitectura y Tecnología de Sistemas Informáticos
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)