Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Multi-output conditional inference trees applied to the electrocity market: variable importance analysis
Año:2018
Áreas de investigación
  • Aplicaciones a ingenierías y ciencias de la información,
  • Estadística,
  • Análisis multivariante
Datos
Descripción
Random forests algorithm has been applied extensively due to its high prediction accuracy, interpretability, ability to deal with high dimensional data and to assess the relevance of highly correlated variables in complex non-linear models. We propose an alternative framework to assess the variable importance in multivariate response scenarios based on the permutation importance method using the conditional inference trees algorithm. To build the solution, a f-divergence measure from information theory is used. The main goal of divergence measures is to provide a distance between probability distributions, in our case, the observations and predicted values. The solution was tested in simulated examples and also in a real case, where we assessed and ranked the most relevant predictors for price and demand of electricity jointly. The results show that the new method outperforms in most cases the outcomes achieved by the recently proposed variable importance technique, Intervention Prediction Measure.
Internacional
Si
Nombre congreso
11th international Conference of the ERCIM (European Research Consortium for Informatics and Mathematics ) Working group on Computational and Methodological statistics (CMStatistics 2018)
Tipo de participación
960
Lugar del congreso
Pisa , Italia
Revisores
Si
ISBN o ISSN
978-9963-2227-5-9
DOI
Fecha inicio congreso
12/12/2018
Fecha fin congreso
14/12/2018
Desde la página
42
Hasta la página
42
Título de las actas
Abstracts of the 1th international Conference of the ERCIM (European Research Consortium for Informatics and Mathematics ) Working group on Computational and Methodological statistics (CMStatistics 2018)
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Ismael Ahrazem Dfuf (UPM)
  • Autor: Jose Manuel Mira Mcwilliams (UPM)
  • Autor: M. Camino Gonzalez Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Estadística computacional y Modelado estocástico
  • Centro o Instituto I+D+i: Instituto Universitario de Investigación del Automóvil (INSIA)
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)