Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Thermal Prediction for Immersion Cooling Data Centers Based on Recurrent Neural Networks
Áreas de investigación
  • Tecnología electrónica y de las comunicaciones,
  • Ciencias de la computación y tecnología informática
In the data center?s scope, current cooling techniques are not very efficient both in terms of energy, consuming up to 40% of the total energy requirements, and in terms of occupied area. This is a critical problem for the development of new smart cities, which require the proliferation of numerous data centers in urban areas, to reduce latency and bandwidth of processing data analytics applications in real time. In this work, we propose a new disruptive solution developed to address this problem, submerging the computing infrastructure in a tank full of a dielectric liquid based on hydro-fluoro-ethers (HFE). Thus, we obtain a passive two phase-cooling system, achieving zero-energy cooling and reducing its area. However, to ensure the maximum heat transfer capacity of the HFE, it is necessary to ensure specific thermal conditions. Making a predictive model is crucial for any system that needs to work around the point of maximum efficiency. Therefore, this research focuses on the implementation of a predictive thermal model, accurate enough to keep the temperature of the cooling system within the maximum efficiency region, under real workload conditions. In this paper, we successfully obtained a predictive thermal model using a neural network architecture based on a Gated Recurrent Unit. This model makes accurate thermal predictions of a real system based on HFE immersion cooling, presenting an average error of 0.75 degC with a prediction window of 1 min.
Nombre congreso
International Conference on Intelligent Data Engineering and Automated Learning
Tipo de participación
Lugar del congreso
Fecha inicio congreso
Fecha fin congreso
Desde la página
Hasta la página
Título de las actas
Intelligent Data Engineering and Automated Learning ? IDEAL 2018
Esta actividad pertenece a memorias de investigación
  • Autor: Jaime Pérez (UPM)
  • Autor: Sergio Pérez (UPM)
  • Autor: Jose Manuel Moya Fernandez (UPM)
  • Autor: Patricia Arroba Garcia (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Laboratorio de Sistemas Integrados (LSI)
  • Centro o Instituto I+D+i: Centro de Investigación en Simulación Computacional
  • Departamento: Ingeniería Electrónica
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)