Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
A Deeply-initialized Coarse-to-fine Ensemble of Regression Trees for Face Alignment
Año:2018
Áreas de investigación
  • Ingenierías,
  • Ciencias de la computación y tecnología informática
Datos
Descripción
Nowadays, Convolutional Neural Nets (CNNs) have become the reference technology for many computer vision problems, including facial landmarks detection. Although CNNs are very robust, they still lack accuracy because they cannot enforce the estimated landmarks to represent a valid face shape. In this paper we investigate the use of a cascade of CNN regressors to make the set of estimated landmarks lie closer to a valid face shape. To this end, we introduce CRN, a facial landmarks detection algorithm based on a Cascade of Recombinator Networks. The proposed approach not only improves the baseline model, but also achieves state-of-the-art results in 300W, COFW and AFLW that are widely considered the most challenging public data sets.
Internacional
Si
Nombre congreso
Proceedings Iberoamerican Congress on Pattern Recognition, CIARP 2018
Tipo de participación
960
Lugar del congreso
Revisores
Si
ISBN o ISSN
978-3-030-13468-6
DOI
Fecha inicio congreso
19/11/2018
Fecha fin congreso
22/11/2018
Desde la página
575
Hasta la página
583
Título de las actas
A Deeply-initialized Coarse-to-fine Ensemble of Regression Trees for Face Alignment
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Pedro Diego Lopez Maroto (UPM)
  • Autor: Roberto Valle Fernandez (UPM)
  • Autor: Luis Baumela Molina (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Visión por Computador y Robótica Aérea
  • Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)