Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Drone detection using depth maps
Año:2018
Áreas de investigación
  • Ingeniería eléctrica, electrónica y automática
Datos
Descripción
Obstacle avoidance is a key feature for safe Unmanned Aerial Vehicle (UAV) navigation. While solutions have been proposed for static obstacle avoidance, systems enabling avoidance of dynamic objects, such as drones, are hard to implement due to the detection range and ?eld-of-view (FOV) requirements, as well as the constraints for integrating such systems on-board small UAVs. In this work, a dataset of 6k synthetic depth maps of drones has been generated and used to train a state-of-the-art deep learning-based drone detection model. While many sensing technologies can only provide relative altitude and azimuth of an obstacle, our depth mapbased approachenables full 3Dlocalization of theobstacle. This is extremely useful for collision avoidance, as 3D localization of detected drones is key to perform ef?cient collision-free path planning. The proposed detection technique has been validated in several real depth map sequences, with multiple types of drones ?ying at up to 2 m/s, achieving an average precision of 98.7%, an average recall of 74.7% and a record detection range of 9.5 meters.
Internacional
Si
Nombre congreso
International Conference on Intelligent Robots and Systems (IROS)
Tipo de participación
960
Lugar del congreso
Revisores
Si
ISBN o ISSN
DOI
Fecha inicio congreso
Fecha fin congreso
Desde la página
1034
Hasta la página
1037
Título de las actas
Drone detection using depth maps
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Adrián Carrió Fernández (UPM)
  • Autor: Sai Vemprala (Texas A)
  • Autor: Andres Ripoll (TU Delft)
  • Autor: Srikanth Saripally (Texas A)
  • Autor: Pascual Campoy Cervera (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)