Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Multi-Output Conditional Inference Trees Applied to the Electricity Market: Variable Importance Analysis
Año:2019
Áreas de investigación
  • Aplicaciones a ingenierías y ciencias de la información,
  • Inteligencia artificial,
  • Estadística,
  • Análisis multivariante,
  • Inferencia no paramétrica
Datos
Descripción
Predicting electricity prices and demand is a very important issue for the energy market industry. In order to improve the accuracy of any predictive model, a previous variable importance analysis is highly advised. In this paper, we propose an alternative framework to assess the variable importance in multivariate response scenarios based on the permutation importance technique, applying the Conditional inference trees algorithm and a f-divergence measure. Our solution was tested in simulated examples as well as a real case, where we assessed and ranked the most relevant predictors for price and demand of electricity jointly in the Spanish market. The new method outperforms, in most cases, the outcomes achieved by the recently proposed techniques, Intervention prediction measure (IPM) and Sequential multi-response feature selection (SMuRFS). For the electricity market case, we identified the most relevant predictors among pollutant, renewable, calendar and lagged prices variables for the joint response of demand and price, showing also the effectiveness of the proposed multivariate response method when compared with the univariate response analysis.
Internacional
Si
JCR del ISI
Si
Título de la revista
Energies
ISSN
****-****
Factor de impacto JCR
2,702
Información de impacto
Volumen
12
DOI
10.3390/en12061097
Número de revista
6
Desde la página
1097
Hasta la página
1121
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Jose Manuel Mira Mcwilliams (UPM)
  • Autor: M. Camino Gonzalez Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Estadística computacional y Modelado estocástico
  • Departamento: Ingeniería de Organización, Administración de Empresas y Estadística
  • Centro o Instituto I+D+i: Instituto Universitario de Investigación del Automóvil (INSIA)
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)