Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Ensembles of Convolutional Neural Network models for pediatric pneumonia diagnosis
Año:2019
Áreas de investigación
  • Ingenierías
Datos
Descripción
Pneumonia is a lung infection that causes 15% of childhood mortality (under 5 years old), over 800,000 children under five every year, around 2,200 every day, all over the world. This pathology is mainly caused by viruses or bacteria. X-rays imaging analysis is one of the most used methods for pneumonia diagnosis. These clinical images can be analyzed using machine learning methods such as convolutional neural networks (CNN), which learn to extract critical features for the classification. However, the usability of these systems is limited in medicine due to the lack of interpretability, because of these models cannot be used to generate an understandable explanation (from a human-based perspective), about how they have reached those results. Another problem that difficults the impact of this technology is the limited amount of labeled data in many medicine domains. The main contributions of this work are two fold: the first one is the design of a new explainable artificial intelligence (XAI) technique based on combining the individual heatmaps obtained from each model in the ensemble. This allows to overcome the explainability and interpretability problems of the CNN ?black boxes?, highlighting those areas of the image which are more relevant to generate the classification. The second one is the development of new ensemble deep learning models to classify chest X-rays that allow highly competitive results using small datasets for training. We tested our ensemble model using a small dataset of pediatric X-rays (950 samples of children between one month and 16 years old) with low quality and anatomical variability (which represents one of the biggest challenges addressed in this work). We also tested other strategies such as single CNNs trained from scratch and transfer learning using CheXNet. Our results show that our ensemble model clearly outperforms these strategies obtaining highly competitive results. Finally we confirmed the robustness of our approach using another pneumonia diagnosis dataset (Kermany et al., 2018).
Internacional
Si
JCR del ISI
Si
Título de la revista
Future Generation Computer Systems-the International Journal of Escience
ISSN
0167-739X
Factor de impacto JCR
6,125
Información de impacto
Índice de impacto = 6.125 (8/108 Comp. Science, Theory & Methods) (año 2019) [Q1/D1]
Volumen
122
DOI
10.1016/j.future.2021.04.007
Número de revista
122
Desde la página
220
Hasta la página
233
Mes
SEPTIEMBRE
Ranking
Q1
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: David Camacho Fernandez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Sistemas Informáticos
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)