Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data
Año:2019
Áreas de investigación
  • Silvicultura,
  • Teledetección
Datos
Descripción
Despite the popularity of random forests (RF) as a prediction algorithm, methods for constructing confidence intervals for population means using this technique are still only sparsely reported. For two regional study areas (Spain and Norway) RF was used to predict forest volume or aboveground biomass using remotely sensed auxiliary data obtained from multiple sensors. Additionally, the changes per unit area of these forest attributes were estimated using indirect and direct methods. Multiple inferential frameworks have attracted increased recent attention for estimating the variances required for confidence intervals. For this study, three di erent statistical frameworks, design-based expansion, model-assisted and model-based estimators, were used for estimating population parameters and their variances. Pairs and wild bootstrapping approaches at di erent levels were compared for estimating the variances of the model-based estimates of the population means, as well as for mapping the uncertainty of the change predictions. The RF models accurately represented the relationship between the response and remotely sensed predictor variables, resulting in increased precision for estimates of the population means relative to design-based expansion estimates. Standard errors based on pairs bootstrapping within or internal to RF were considerably larger than standard errors based on both pairs and wild external bootstrapping of the entire RF algorithm. Pairs and wild external bootstrapping produced similar standard errors, but wild bootstrapping better mimicked the original structure of the sample data and better preserved the ranges of the predictor variables.
Internacional
Si
JCR del ISI
Si
Título de la revista
Remote Sensing
ISSN
2072-4292
Factor de impacto JCR
4,509
Información de impacto
Volumen
11
DOI
10.3390/rs11161944
Número de revista
16
Desde la página
1
Hasta la página
21
Mes
AGOSTO
Ranking
Q1
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Jesica Esteban Cava (UPM)
  • Autor: Ronald McRoberts (Unniversity of Minnesota)
  • Autor: Alfredo Fernandez Landa (UPM)
  • Autor: José Luis Tomé (Agresta S. Coop.)
  • Autor: Erik Naesset (Norwegian University of Life Sciences)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Ingeniería y Morfología del Terreno
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)