Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
A Bayesian Network Model for Surface Roughness Prediction in the Machining Process
Año:2008
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The literature reports many scientific works on the use of artificial intelligence techniques such as neural networks or fuzzy logic to predict surface roughness. This article aims at introducing Bayesian network-based classifiers to predict surface roughness (Ra) in high-speed machining. These models are appropriate as prediction techniques because the non-linearity of the machining process demands robust and reliable algorithms to deal with all the invisible trends present when a work piece is machining. The experimental test obtained from a high-speed milling contouring process analysed the indicator of goodness using the Naive Bayes and the Tree-Augmented Network algorithms. Up to 81.2% accuracy was achieved in the Ra classification results. Therefore, we envisage that Bayesian network-based classifiers may become a powerful and flexible tool in high-speed machining.
Internacional
Si
JCR del ISI
Si
Título de la revista
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
ISSN
0020-7721
Factor de impacto JCR
0,492
Información de impacto
Volumen
DOI
Número de revista
0
Desde la página
1181
Hasta la página
1192
Mes
ENERO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Participante: J.R. Alique
  • Participante: M. Correa
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Participante: M. de J. Ramírez
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de análisis de decisiones y estadística
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)