Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
An Empirical Comparison of Graph-based Dimensionality Reduction Algorithms on Facial Expression Recognition Tasks
Año:2008
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Facial expression recognition is a topic of interest both in industry and academia. Recent approaches to facial expression recognition are based on mapping ex- pressions to low dimensional manifolds. In this paper we revisit various dimensionality reduction algorithms using a graph-based paradigm. We compare eight di- mensionality reduction algorithms on a facial expres- sion recognition task. For this task, experimental re- sults show that although Linear Discriminant Analysis (LDA) is the simplest and oldest supervised approach, its results are comparable to more flexible recent algo- rithms. LDA, on the other hand, is much simpler to tune, since it only depends on one parameter.
Internacional
Si
DOI
10.1109/ICPR.2008.4761731
Edición del Libro
0
Editorial del Libro
IEEE
ISBN
978-1-4244-2174-9
Serie
Título del Libro
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Desde página
1
Hasta página
4
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Luis Baumela Molina (UPM)
  • Autor: José Miguel Buenaposada Biencit (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Percepción Computacional y Robótica
  • Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)