Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Prevision of industrial SO2 pollutant concentration applying ANNs
Año:2009
Áreas de investigación
  • Procesado y análisis de la señal
Datos
Descripción
Air pollution is one of the most important environmental problems. Sulphur Dioxide (SO2) and Suspended Particles are considered the most important atmospheric pollutants. The prevision of industrial SO2 air pollutant concentrations would allow us to take preventive measures such as reducing the pollutant emission to the atmosphere. In This work we apply Feed Forward Artificial Neural Network to predict the air pollution concentrations in Salamanca, Mexico. The work focuses on the daily maximum concentration of SO2. A database used to train the neural network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and concentrations of SO2 along a year. Results of the experiments with the proposed system show the importance of the meteorological variable set on the prediction of SO2 concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Internacional
Si
Nombre congreso
Industrial Informatics, 2009. INDIN 2009. 7th IEEE International Conference on
Tipo de participación
960
Lugar del congreso
Cardiff, UK
Revisores
Si
ISBN o ISSN
1935-4576
DOI
10.1109/INDIN.2009.5195856
Fecha inicio congreso
23/06/2009
Fecha fin congreso
26/06/2009
Desde la página
510
Hasta la página
515
Título de las actas
Proc. of Industrial Informatics, 2009. INDIN 2009. 7th IEEE International Conference on
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Antonio Vega-Corona (UG)
  • Autor: María Guadalupe Cortina Januchs (UPM)
  • Autor: Diego Andina De la Fuente (UPM)
  • Autor: Jose Miguel Barron Adame (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Automatización en Señal y Comunicaciones (GASC)
  • Departamento: Señales, Sistemas y Radiocomunicaciones
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)