Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
ACCURACY OF GENERALIZED DIMENSIONS ESTIMATED FROM GRAYSCALE IMAGES USING THE METHOD OF MOMENTS
Año:2009
Áreas de investigación
  • Matemáticas
Datos
Descripción
The moment-based box counting method of multifractal analysis is widely used for estimating generalized dimensions, D-q, from two-dimensional grayscale images. An evaluation of the accuracy of this method is needed to establish confidence in the resulting estimates of D-q. We estimated D-q from q = -10 to +10 for 23 random geometrical multifractal fields with different grid sizes, and known analytical D-q versus q functions. The fields were transformed to give normalized grayscale values between zero and one. Comparison of the estimated and analytical functions indicated the moment-based box counting method overestimates D-q by as much as 6.9% when q << 0. The root mean square error, RMSE, for the entire range of q values examined ranged from 7.81 x 10(-6) to 1.35 x 10(-1), with a geometric mean of 6.50 x 10(-3). The RMSE decreased with decreasing grid size and increasing heterogeneity. These trends appear to be largely due to the presence of zeros in the normalized grayscale fields. Variations in the slope of the log-transformed partition function, In[chi(q,delta)], with box size resulted in the overestimation of D-q when q << 0. An alternative procedure for estimating D-q was developed based on the numerical first derivatives of In[chi(q, delta)]. Using this approach the maximum deviation in D-q values was only 1.2%, while the RMSE varied from 3.11 x 10(-6) to 2.72 x 10(-2), with a geometric mean of 2.57 x 10(-4). When analyzing normalized grayscale fields, moment-based estimates of D-q should be interpreted with care. An order of magnitude increase in the accuracy of D-q can be achieved for such fields if the numerical first derivatives of In[chi(q, delta)] are used in the analysis instead of standard linear regression
Internacional
Si
JCR del ISI
Si
Título de la revista
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
ISSN
0218-348X
Factor de impacto JCR
0,486
Información de impacto
Volumen
17
DOI
Número de revista
3
Desde la página
351
Hasta la página
363
Mes
ENERO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: N.R.A Bird (Rothamsted Res, Harpenden AL5 2JQ, Herts England)
  • Autor: Ana Maria Tarquis Alfonso (UPM)
  • Autor: E Perfect (Univ. Tennessee, USA)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Automatización en Señal y Comunicaciones (GASC)
  • Departamento: Matemática Aplicada a la Ingeniería Agronómica
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)