Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Automated Constraint Selection for Semi-Supervised Clustering Algorithm
Año:2009
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The incorporation of background knowledge in unsupervised algorithms has been shown to yield performance improvements in terms of model quality and execution speed. However, performance is dependent on the quantity and quality of the background knowledge being exploited. In this work, we study the issue of selecting Must-Link and Cannot-Link constraints for semi-supervised clustering. We propose ¿ConstraintSelector¿, an algorithm that takes as input a set of labeled data instances, from which constraints can be derived, ranks these instances on their usability and then derives constraints from the topranked instances only. Our experiments show that ConstraintSelector chooses, respectively reduces, the set of candidate constraints without compromising the quality of the derived model.
Internacional
Si
Nombre congreso
CAEPIA-TTIA 2009
Tipo de participación
960
Lugar del congreso
Sevilla
Revisores
Si
ISBN o ISSN
DOI
Fecha inicio congreso
09/11/2009
Fecha fin congreso
13/11/2009
Desde la página
151
Hasta la página
160
Título de las actas
CAEPIA 2009, LNAI 5988
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Ernestina Menasalvas Ruiz (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Data Mining Engineering (DaME) Ingeniería de Minería de datos
  • Departamento: Lenguajes y Sistemas Informáticos e Ingeniería de Software
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)