Memorias de investigación
Artículos en revistas:
HySafe Standard benchmark Problem SBEP-V11: Predictions of hydrogen release and dispersion
Año:2010

Áreas de investigación
  • Ingeniería mecánica, aeronaútica y naval

Datos
Descripción
One of the tasks of the HySafe Network of Excellence was the evaluation of available CFD tools and models for dispersion and combustion in selected hydrogen release scenarios identified as ``standard benchmark problems¿¿ (SBEPs). This paper presents the results of the HySafe standard benchmark problem SBEP-V11. The situation considered is a high pressure hydrogen jet release from a compressed gaseous hydrogen (CGH2) bus in an underpass. The bus considered is equipped with 8 cylinders of 5 kg hydrogen each at 35 MPa storage pressure. The underpass is assumed to be of the common beam and slab type construction with I-beams spanning across the highway at 3 m centres (normal to the bus), plus cross bracing between the main beams, and light armatures parallel to the bus direction. The main goal of the present work was to evaluate the role of obstructions on the underside of the bridge deck on the dispersion patterns and assess the potential for hydrogen accumulation. Four HySafe partners participated in this benchmark, with 4 different CFD codes, ADREA-HF, CFX, FLACS and FLUENT. Four scenarios were examined in total. In the base case scenario 20 kg of hydrogen was released in the basic geometry. In Sensitivity Test 1 the release position was moved so that the hydrogen jet could hit directly the light armature on the roof of the underpass. In Sensitivity Test 2 the underside of the bridge deck was flat. In Sensitivity Test 3 the release was from one cylinder instead of four (5 kg instead of 20). The paper compares the results predicted by the four different computational approaches and attempts to identify the reasons for observed disagreements. The paper also concludes on the effects of the obstructions on the underside of the bridge deck.
Internacional
Si
JCR del ISI
Si
Título de la revista
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
ISSN
0360-3199
Factor de impacto JCR
3,945
Información de impacto
Volumen
35
DOI
Número de revista
Desde la página
3857
Hasta la página
3867
Mes
ENERO
Ranking

Esta actividad pertenece a memorias de investigación

Participantes

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Mecánica de fluidos aplicada a la Ingeniería Industrial