Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
NUMERICAL SIMULATION OF GROUP COMBUSTION OF PULVERIZED COAL
Year:2011
Research Areas
  • Mathematics,
  • Engineering
Information
Abstract
A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi- Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.
International
Si
JCR
Si
Title
Combustion And Flame
ISBN
0010-2180
Impact factor JCR
2,747
Impact info
Datos JCR del año 2010
Volume
10.1016/j.combustflame.2011.02.002
Journal number
From page
1852
To page
1865
Month
SEPTIEMBRE
Ranking
Participants
  • Autor: Laura Saavedra Lago (UPM)
  • Autor: Amable Liñan Martinez (UPM)
  • Autor: Alfredo Bermúdez
  • Autor: Jose Luis Ferrín
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Análisis y experimentación en mecánica de fluidos y combustión
  • Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)