Observatorio de I+D+i UPM

Memorias de investigación
Cursos, seminarios y tutoriales:
The Beta Cube
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Pure lambda calculus reduction strategies have been thoroughly studied, as they constitute the foundations of evaluation in many programming languages. Sestoft collected and defined several of them as sets of big-step rules, thus clarifying varying and inaccurate definitions in the literature. From Sestoft's work, we present a rule template which can instantiate any of the foremost strategies and some more. Abstracting the parameters of the template, we propose a space of reduction strategies we like to call the Beta Cube. We also formalise a hybridisation operator---informally suggested by Sestoft---which produces new strategies by composing a subsidiary and a base strategy from the cube. Furthermore, we discuss a variant of the hybridisation operator, in which the operand of an application is reduced by the subsidiary instead of the hybrid. This accomplish with the implicit remarks on Plotkin's theorems for the lambda-value calculus. The new hybridisation operator allows to produce a normalising strategy in Plotkin's (pure) lambda-value calculus. This space gives new and interesting insights about the properties of reduction strategies. We present and prove the Absorption Theorem, which states that subsidiaries are left-identities of their hybrids
Nombre congreso
Charla en la PL Entropy Meeting
Entidad organizadora
Aarhus University
Nacionalidad Entidad
Lugar/Ciudad de impartición
Fecha inicio
Fecha fin
Esta actividad pertenece a memorias de investigación
  • Autor: Alvaro Garcia Perez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: BABEL: Desarrollo de Software Fiable y de Alta Calidad a partir de Tecnología Declarativa
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)