Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
The scenario of two-dimensional instabilities of the cylinder wake under EHD forcing: A linear stability analysis
Year:2012
Research Areas
  • Phisics
Information
Abstract
We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier?Stokes equations. Finally, the critical parameters obtained from both approaches are compared.
International
Si
JCR
No
Title
FLUID DYNAMICS RESEARCH
ISBN
0169-5983
Impact factor JCR
0,673
Impact info
Volume
44
Journal number
From page
055501
To page
0555020
Month
SIN MES
Ranking
Participants
  • Autor: Leo Miguel Gonzalez Gutierrez (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: CEHINAV (Canal de Ensayos Hidrodinámicos de la E.T.S.I. Navales)
  • Departamento: Ciencias Aplicadas a la Ingeniería Naval
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)