Memorias de investigación
Artículos en revistas:
Effect of ion flux on helium retention in helium-irradiated tungsten
Año:2013

Áreas de investigación
  • Ingenierías

Datos
Descripción
Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion
Internacional
Si
JCR del ISI
Si
Título de la revista
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS
ISSN
0168-583X
Factor de impacto JCR
1,211
Información de impacto
Volumen
303
DOI
10.1016/j.nimb.2012.10.038
Número de revista
Desde la página
81
Hasta la página
83
Mes
SIN MES
Ranking
0

Esta actividad pertenece a memorias de investigación

Participantes
  • Autor: Antonio Juan Rivera de Mena UPM
  • Autor: G. Valles Instituto de Fusión Nuclear
  • Autor: M.J. Caturla Universidad de Alicante
  • Autor: I. Martín-Bragado IMDEA Materiales Instituto

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Fusión Nuclear Inercial y Tecnología de fusión
  • Centro o Instituto I+D+i: Instituto de Fusión Nuclear
  • Departamento: Ingeniería Nuclear