Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Isoperimetric inequalities in graphs and surfaces
Año:2014
Áreas de investigación
  • Matemáticas
Datos
Descripción
Let M be the set of metric spaces that are either graphs with bounded degree or Riemannian manifolds with bounded geometry. Kanai proved the quasi-isometric stability of several geometric properties (in particular, of isoperimetric inequalities) for the spaces in M. Kanai proves directly these results for graphs with bounded degree; in order to prove the general case, he uses a graph (an ?-net) associated to a Riemannian manifold with bounded geometry. This paper studies the stability of isoperimetric inequalities under quasi-isometries between non-exceptional Riemann surfaces (endowed with their Poincare metrics). The present work proves the stability of the linear isoperimetric inequality for planar surfaces (genus zero surfaces) without the condition on bounded geometry. It is also shown the stability of any non-linear isoperimetric inequality.
Internacional
Si
JCR del ISI
No
Título de la revista
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
Factor de impacto JCR
Información de impacto
Volumen
46
DOI
10.1016/j.endm.2014.08.034
Número de revista
Desde la página
257
Hasta la página
264
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Alicia Canton Pire (UPM)
  • Autor: Ana Granados (Saint Louis University)
  • Autor: Ana Portilla (Saint Louis University)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Matemática e Informática Aplicadas a la Ingenierías Civil y Naval
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)