Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
RICCI FLOWS ON SURFACES RELATED TO THE EINSTEIN WEYL AND ABELIAN VORTEX EQUATIONS
Year:2014
Research Areas
  • Differential geometry
Information
Abstract
There are described equations for a pair comprising a Riemannian metric and a Killing field on a surface that contain as special cases the Einstein Weyl equations (in the sense of D. Calderbank) and a real version of a special case of the Abelian vortex equations, and it is shown that the property that a metric solve these equations is preserved by the Ricci flow. The equations are solved explicitly, and among the metrics obtained are all steady gradient Ricci solitons (e.g. the cigar soliton) and the sausage metric; there are found other examples of eternal, ancient, and immortal Ricci flows, as well as some Ricci flows with conical singularities.
International
Si
JCR
Si
Title
Glasgow Mathematical Journal
ISBN
0017-0895
Impact factor JCR
0,309
Impact info
JCR 2013.
Volume
56
10.1017/S0017089514000044
Journal number
3
From page
569
To page
599
Month
SIN MES
Ranking
267 de 299 en mathematics.
Participants
  • Autor: Daniel Jeremy Fox Hornig (UPM)
Research Group, Departaments and Institutes related
  • Creador: Departamento: Matemáticas del Área Industrial
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)