Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Scalable Multi-Output Label Prediction: From Classifier Chains to Classifier Trellises
Año:2015
Áreas de investigación
  • Tecnología electrónica y de las comunicaciones,
  • Ciencias de la computación y tecnología informática
Datos
Descripción
Multi-output inference tasks, such as multi-label classification, have become increasingly important in recent years. A popular method for multi-label classification is \emph{classifier chains}, in which the predictions of individual classifiers are cascaded along a chain, thus taking into account inter-label dependencies and improving the overall performance. Several varieties of classifier chain methods have been introduced, and many of them perform very competitively across a wide range of benchmark datasets. However, scalability limitations become apparent on larger datasets when modeling a fully-cascaded chain. In particular, the methods' strategies for discovering and modeling a good chain structure constitutes a mayor computational bottleneck. In this paper, we present the \key{classifier trellis} (CT) method for scalable multi-label classification. We compare CT with several recently proposed classifier chain methods to show that it occupies an important niche: it is highly competitive on standard multi-label problems, yet it can also scale up to thousands or even tens of thousands of labels.
Internacional
Si
JCR del ISI
Si
Título de la revista
Pattern Recognition
ISSN
0031-3203
Factor de impacto JCR
2,584
Información de impacto
Volumen
48
DOI
10.1016/j.patcog.2015.01.004
Número de revista
6
Desde la página
2096
Hasta la página
2109
Mes
JUNIO
Ranking
40/248 en JCR. Cat.: ENG., ELECTRICAL & ELECTRONIC
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: David Luengo Garcia (UPM)
  • Autor: Jesse Read
  • Autor: Luca Martino
  • Autor: Pablo Olmos
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Teoría de Aproximación Constructiva y Aplicaciones
  • Departamento: Teoría de la Señal y Comunicaciones (Provisional)
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)