Memorias de investigación
Ponencias en congresos:
DNA demethylases control growth-dormancy transitions in Poplar
Año:2016

Áreas de investigación
  • Ciencias naturales y ciencias de la salud

Datos
Descripción
Coordinating growth and reproduction with the environment is essential for the survival of trees in temperate and boreal latitudes. In these regions, deciduous and periodic growth habits evolved into a single trait known as winter dormancy. This trait consists of growth cessation through the arrest of meristem activity and consequent transformation of the apical meristem into a dormant winter bud. For many trees and perennial plants, the perception of short days (SD) is sufficient to promote cessation of growth and bud formation. Restoration of meristem activity and bud break during the spring are trigged by the environmental favourable conditions (long days and warm temperatures) once the chilling requirement is fulfilled. Active chromatin rearrangement has been proposed as key steps in growth-dormancy transitions in trees, but yet functional studies are needed to support this hypothesis. In this work we investigated the role of DNA demethylases during dormancy. Thought phylogenetic and protein sequence analyses we firstly identified poplar and chestnut Demeter-like genes (DMLs). Expression studies showed that CsDML and its closer homolog gene PtaDML6, are induced during dormancy entrance. Overexpression of CsDML accelerated short day-induced bud formation in poplar. Comparative transcriptional profiling revealed that the overexpression of this 5mC DNA demethylase promoted the molecular changes previously observed under short-day conditions. In the other hand, two poplar DMLs genes, PtaDML8 and PtaDML10, were induced during dormancy exit. The phenological assays showed that PtaDML8-10 knockdown plants (KD) have a delayed bud break. Transcriptome analyses revealed that KD plants have altered biological processes such as cellular metabolic process, photosynthesis, ribosome biogenesis and response to light and temperature stimulus. Whole Genome Bisulphite Sequencing let us to identify the DMR (differentially methylated region) in KDs vs. WT at bud break, indicating that transcriptomic changes could be associated to the changes in DNA methylation status. Taken all together, we demonstrate for the first time that chromatin rearrangement leading by active DNA demethylation control dormancy entrance and exit in poplar.
Internacional
No
Nombre congreso
XIII REUNIÓN DE BIOLOGÍA MOLECULAR DE PLANTAS
Tipo de participación
960
Lugar del congreso
Oviedo
Revisores
Si
ISBN o ISSN
CDP08UPM
DOI
Fecha inicio congreso
22/06/2016
Fecha fin congreso
24/06/2016
Desde la página
80
Hasta la página
80
Título de las actas
XIII REUNIÓN DE BIOLOGÍA MOLECULAR DE PLANTAS

Esta actividad pertenece a memorias de investigación

Participantes

Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Interacciones moleculares planta-insecto.
  • Grupo de Investigación: Biotecnología Vegetal
  • Centro o Instituto I+D+i: Centro de Biotecnología y Genómica de Plantas, CBGP
  • Departamento: Biotecnología - Biología Vegetal