Observatorio de I+D+i UPM

Memorias de investigación
Research Publications in journals:
Real-time monitoring of PtaHMGB activity in poplar transactivation assays
Year:2017
Research Areas
  • Molecular, cellular and genetic biology,
  • Biology,
  • Plants and animal biology and ecology,
  • Botany,
  • Plant physiology,
  • Agua
Information
Abstract
Background: Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. Results: Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5? sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. Conclusions: We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters.
International
Si
JCR
Si
Title
Plant Methods
ISBN
1746-4811
Impact factor JCR
3,449
Impact info
Datos JCR del año 2015
Volume
13
10.1186/s13007-017-0199-x
Journal number
From page
50
To page
65
Month
JUNIO
Ranking
Participants
  • Autor: Jose Manuel Ramos Sanchez (UPM)
  • Autor: Paolo Maria Triozzi . (UPM)
  • Autor: Alicia Moreno Cortes (UPM)
  • Autor: Daniel Conde Rodriguez (UPM)
  • Autor: Mariano Manuel Perales (UPM)
  • Autor: Isabel Marta Allona Alberich (UPM)
Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Biotecnología Vegetal
  • Departamento: Biotecnología - Biología Vegetal
S2i 2020 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)