Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Multidimensional membership functions in T-S fuzzy models for modelling and identification of nonlinear multivariable systems using genetic algorithms
Año:2019
Áreas de investigación
  • Sistemas complejos,
  • Identificación de sistemas,
  • Control difuso,
  • Sistemas multivariables,
  • Control inteligente
Datos
Descripción
En este trabajo, se propone un nuevo método para el modelado borroso de Takagi-Sugeno (T-S) basado en funciones de pertenencia multidimensionales (MDMFs). Se verifica que el método de inferencia borrosa de las funciones de pertenencia unidimensionales (1DMF) puede colocar las reglas borrosas en ubicaciones inadecuadas para el modelado de sistemas multivariables no lineales, mientras que la aplicación de MDMFs permite una mejor identificación mediante un número menor de reglas borrosas. El método propuesto utiliza un algoritmo genético (GA) para el ajuste de las MDMFs y el método de T-S para modelar e identificar el sistema no lineal. Como ejemplo de validación, se elige un sistema multivariable no lineal, un sistema de tanques acoplados. Los resultados muestran que el método propuesto presenta menor error de identificación que el método de T-S, con menor número de reglas borrosas. Este trabajo esta vinculado al proyecto de investigación: financiado por el Ministerio de Economía y Competitividad de España (Assisted Navigation through Natural Language (NAVEGASE) (DPI 2014-53525-C3-1-R). Mi aportación se centró en la formulación matemática del nuevo método.
Internacional
Si
JCR del ISI
Si
Título de la revista
Applied Soft Computing Journal
ISSN
1568-4946
Factor de impacto JCR
3,907
Información de impacto
- Cuartil: Q1 (mitad superior) Información de impacto Datos JCR del año 2017 Factor de impacto: 3,907 Categoria: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE: 3,907: Q1: 17/132 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS: 3,907: Q1: 11/105 Número de citas WoS: Número de citas en Google Scholar: Número de citas scopus: 1
Volumen
75
DOI
10.1016/j.asoc.2018.11.034
Número de revista
Desde la página
607
Hasta la página
615
Mes
SIN MES
Ranking
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE: 3,907: Q1: 17/132 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS: 3,907: Q1: 11/105
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Basil Mohammed Al-Hadithi Abdul Qadir (UPM)
  • Autor: José Miguel Adánez
  • Autor: Agustin Jimenez Avello (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Control Inteligente
  • Departamento: Ingeniería Eléctrica, Electrónica Automática y Física Aplicada
  • Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)