Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Augmented Semi-naive Bayes Classifier
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The naive Bayes is a competitive classifier that makes strong conditional independence assumptions. Its accuracy can be improved by relaxing these assumptions. One classifier which does that is the semi-naive Bayes. The state-of-the-art algorithm for learning a semi-naive Bayes from data is the backward sequential elimination and joining (BSEJ) algorithm. We extend BSEJ with a second step which removes some of its unwarranted independence assumptions. Our classifier outperforms BSEJ and five other Bayesian network classifiers on a set of benchmark databases, although the difference in performance is not statistically significant.
Internacional
No
Nombre congreso
XV Conferencia de la Asociación Española para la Inteligencia Artificial
Tipo de participación
960
Lugar del congreso
Madrid
Revisores
Si
ISBN o ISSN
978-3-642-40642-3
DOI
Fecha inicio congreso
17/09/2013
Fecha fin congreso
20/09/2013
Desde la página
159
Hasta la página
167
Título de las actas
Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, volume 8109 of Lecture Notes in Computer Science
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Bojan Mihaljevic (UPM)
  • Autor: Pedro Maria Larrañaga Mugica (UPM)
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: COMPUTATIONAL INTELLIGENCE GROUP
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)