Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Bayesian sparse partial least squares
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Partial least squares (PLS) is a class of methods that makes use of a set of latent or unobserved variables to model the relation between (typically) two sets of input and output variables, respectively. Several flavors, depending on how the latent variables or components are computed, have been developed over the last years. In this letter, we propose a Bayesian formulation of PLS along with some extensions. In a nutshell, we provide sparsity at the input space level and an automatic estimation of the optimal number of latent components. We follow the variational approach to infer the parameter distributions. We have successfully tested the proposed methods on a synthetic data benchmark and on electrocorticogram data associated with several motor outputs in monkeys.
Internacional
Si
JCR del ISI
Si
Título de la revista
Neural Computation
ISSN
0899-7667
Factor de impacto JCR
1,76
Información de impacto
Datos JCR del año 2012
Volumen
25
DOI
Número de revista
12
Desde la página
3318
Hasta la página
3339
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: D. Vidaurre
  • Autor: M. van Gerven
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: T. Heskes
  • Autor: P. Larrañaga
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)