Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Classification of neocortical interneurons using affinity propagation
Año:2013
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Internacional
Si
JCR del ISI
Si
Título de la revista
Frontiers in Neural Circuits
ISSN
1662-5110
Factor de impacto JCR
3,333
Información de impacto
Datos JCR del año 2012
Volumen
7
DOI
10.3389/fncir.2013.00185
Número de revista
185
Desde la página
Hasta la página
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: R. Santana
  • Autor: L.M. McGarry
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: P. Larrañaga
  • Autor: R. Yuste
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)