Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Predicting EQ-5D from the Parkinson's disease questionnaire PDQ-8 using multi-dimensional Bayesian network classifiers
Año:2014
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or specific measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied in cost-effectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classifiers. Our approach is evaluated using five-fold cross-validation experiments carried out on a Parkinson's data set containing 488 patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experimental results are promising in terms of predictive performance as well as the identification of dependence relationships among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect
Internacional
Si
JCR del ISI
Si
Título de la revista
Biomedical Engineering: Applications, Basis And Communications
ISSN
1016-2372
Factor de impacto JCR
0,233
Información de impacto
Volumen
26
DOI
10.4015/S101623721450015X
Número de revista
1
Desde la página
1
Hasta la página
11
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: H. Borchani
  • Autor: Maria Concepcion Bielza Lozoya (UPM)
  • Autor: P. Martínez-Martín
  • Autor: P. Larrañaga
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Computational Intelligence Group
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)