Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
An Ant Colony System adaptation to deal with accessibility issues after a disaster
Año:2014
Áreas de investigación
  • Ingenierías
Datos
Descripción
One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work tasks to take maximum advantage of the limited available financial and human resources. Previous research focused on speeding up repair work or on selecting the location of health centers to minimize transport times for injured citizens. In spite of the good results, this research does not take into account another key factor: survivor accessibility to resources. In this paper we account for the accessibility issue, that is, we maximize the number of survivors that reach the nearest regional center (cities where economic and social activity is concentrated) in a minimum time by planning which rural roads should be repaired given the available financial and human resources. This is a combinatorial problem since the number of connections between cities and regional centers grows exponentially with the problem size, and exact methods are no good for achieving an optimum solution. In order to solve the problem we propose using an Ant Colony System adaptation, which is based on ants? foraging behavior. Ants stochastically build minimal paths to regional centers and decide if damaged roads are repaired on the basis of pheromone levels, accessibility heuristic information and the available budget. The proposed algorithm is illustrated by means of an example regarding the 2010 Haiti earthquake, and its performance is compared with another metaheuristic, GRASP.
Internacional
Si
Nombre congreso
International Conference on Operations Research
Tipo de participación
960
Lugar del congreso
Aachen, Alemania
Revisores
Si
ISBN o ISSN
978-1-4799-6773-5
DOI
Fecha inicio congreso
02/09/2014
Fecha fin congreso
05/09/2014
Desde la página
116
Hasta la página
116
Título de las actas
Business Analytics and Optimzation
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Alfonso Mateos Caballero (UPM)
  • Autor: Antonio Jimenez Martin (UPM)
  • Autor: Héctor Muñoz
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de análisis de decisiones y estadística
  • Departamento: Inteligencia Artificial
S2i 2022 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)